Effect of cavity formation in aqueous solution on gas solubility

Tuan Anh Ho

Sandia National Laboratories

Controlling Emergence

CO₂ solubility is controlled by the cavity formation in the aqueous solutions

Cavity in aqueous solution

Sand - Porosity Large scale

Water - Cavity

Small scale

Probe volume R=3.3Å

Density of water: 1g/ml

→ 5 water molecules in
the probe volume

Zero water \rightarrow cavity

Hypothesis:

If there are more cavities (the same size as a gas molecule) there will be more gas molecules dissolved in water.

NaCl solution will create fewer cavities than pure water because of the strong hydration shell → smaller gas solubility

Effect of cavity formation on gas solubility

Energy to create the cavities in aqueous solutions

Solubility of CO₂ in aqueous solution at 298K, 1atm

(Yasunishi and Yoshida, 1979)

CO₂, 298K

CO₂, 308K

CEH44,22998K

Planned Manuscripts

Tuan Anh Ho, Effect of cavity formation in aqueous solution on gas solubility (2018)

Effect of cavity formation in aqueous solution on gas solubility

Tuan Anh Ho
Sandia National Laboratories

Thank you!

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

