
DISSOLVED CO₂ IN REAL BRINES

http://www.epa.gov/climatechange/ccs/index.html

Deep subsurface brines for carbon sequestration are not simple NaCl brines, but they are often modeled that way.

Work was performed at the Jackson School of Geosciences at the University of Texas at Austin (Kim Gilbert).

Scientific Achievement

Provide data and insights into the molecular interactions of CO₂, water and ions.

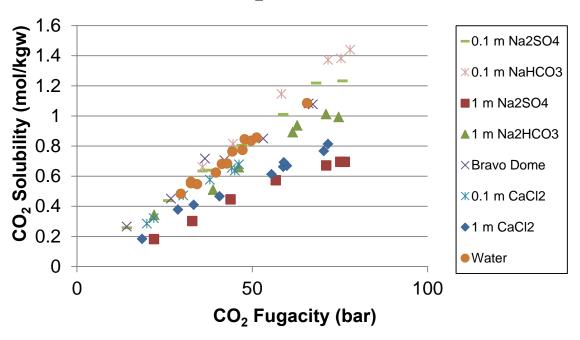
Significance and Impact

This research generates experimental data that provides insight into the molecular interactions in brine when CO_2 is dissolved; which modelers can use to more accurately predict dissolved CO_2 in subsurface brines.

Research Details

- Measured dissolved CO_2 in brines containing Na^+ , Ca^{2+} , Cl^- , SO_4^{2-} , HCO_3^- with increasing P_{CO2} .
- Found a strong correlation between dissolved CO_2 and electrolyte hydration number and the ΔG , ΔS and ΔH of electrolyte solvation.
- Used the regression equation to accurately predict
 CO₂ solubility in the Bravo Dome brine.

Measured CO₂ Solubility


CO₂ solubility ↑ with:

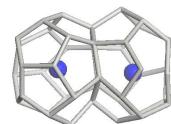
- † CO₂ Fugacity (Effective CO₂ partial pressure)
- ↓ Ionic strength

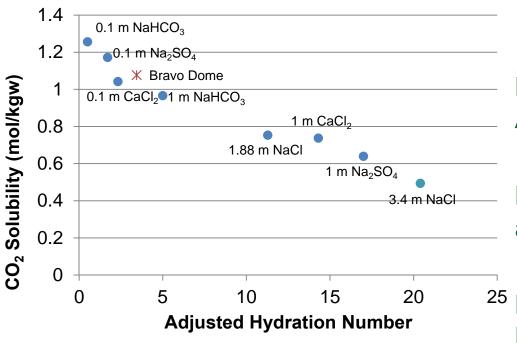
Deviations from expected:

- lonic strength not a reliable predictor of CO₂ solubility:
 - 15% less CO₂ in 1 molal
 Na₂SO₄ than CaCl₂.
- CO₂ solubility in mixed Bravo Dome not well predicted
 - CO₂ solubility is up to 17% more than predicted.

Measured CO₂ Solubility at 60°C*

* CO₂ solubility also measured at 30°C, but not presented here because of space.





How Much Free Water?

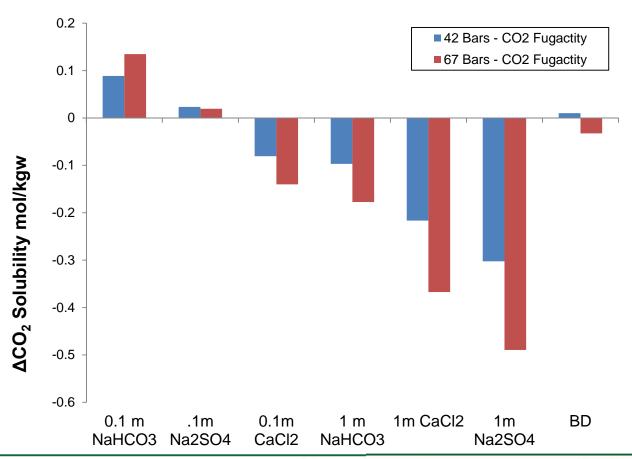
- Hydration Number: # of water molecules interact electrically with ions.
 - How many free water molecules are there to cage around the CO₂?
- ΔH , ΔS , ΔG of Hydration for the electrolyte allow for the prediction of CO_2 solubility.
 - How much energy is required to extract a water molecule from ion?
 - Is the system structured in a way to facilitate CO₂ hydration?

CH₄ caged Randall Cygan, Sandia National Labs

 $R^2 > 0.92$ for hydration number, ΔH , ΔS , and ΔG

 $R^2 = 0.9997$ for hydration number and ΔH combined.

Predicted CO₂ solubility in the Bravo Dome mixed brine to <1%.



CO₂ Solubility Sensitivity to Salts at 60°C

Difference in CO₂ solubility between salt solutions and water.

 Δ solubility = m_{water} - m_{salt}

Conclusions

- 1. CO₂ solubility decreases with increasing ionic strength for a give salt, but not necessarily for different salts.
- 2. CO₂ solubility has the highest sensitivity to 1 m Na₂SO₄, while 0.1 m NaHCO₃ resulted in an increase in CO₂ solubility over water.
- 3. CO₂ solubility can be best predicted based on
 - 1. Hydration number adjusted for the moles of each ion present.
 - 1. Number of free water molecules
 - Based on ion partial molar compressibility so represents only inner-ring water molecules
 - 2. Enthalpy (ΔH) and free energy (ΔG) of hydration
 - Required energy to "free" water molecules that are electrostricted by ions
 - 3. Entropy of hydration
 - 1. Structure imposed or disrupted by ion (NOT CO₂) solvation

