Discrete Element Modeling of Rock Mechanical Alteration Due to CO₂-Charged Brine

Unaltered Entrada Sandstone Experimental Result Numerical Result Numerical Result 10 10 20 30 displacement/µm

Discrete element modeling of indentation test validated against experimental result.

Sun, Espinoza, Balhoff. 2016. Journal of Geophysical Research: Solid Earth 121, 7867-7881

Work was performed at University of Texas at Austin

Scientific Achievement

Discrete element method is applied to study CO₂-related chemo-mechanical alteration on rocks. CO₂-charged brine tends to alter the rock mechanical property by reducing cement size rather than cement strength.

Significance and Impact

CO₂-related alteration on rock mechanical properties is critical to host formation structure integrity and long-term secure CO₂ storage. The mechanism of CO₂-related alteration is investigated in this study.

Research Details

- Numerical model is developed and verified against both analytical model and experimental result. Cement size reduction can reproduce the mechanical degradation due to CO₂-alteration.
- Parametric study is performed for all model inputs to identify the key parameter representing the CO₂alteration at the particle/pore scale.

Discrete element method and bonded-particle model

₩

Spring

elastic component

—]—

Dashpot viscous component

<u>_</u>

Slip plastic component

(b)

Schematic of DEM + BPM

Idealization of cemented rock

Obermayr et al. 2012

BPM schematic for 2D

DEM + BPM model inputs: Bond/particle modulus, bond strength, bond size.

Verification against Cavity Expansion Model

Model setup

Verification result

Alehossein et al., 2000

Validation against experiments

Thick bonds ($\lambda = 0.5$)

Thin bonds ($\lambda = 0.29$)

All variable are invariant except the bond size λ .

Conclusions

- Bonded-Particle Model successfully models indentation on cemented sandstones
- CO₂-related mechanical rock degradation in bleached Entrada sandstone can be ascribed to the degradation of interparticle cementation
- CO₂-related degradation on cement bonds is likely due to the reduction of cement size rather than cement strength

