Bioclogging to Prevent CO₂ Leakage Pathways

Scientific Achievement

Biological experiments demonstrate that microbial biofilm can continue to clog porous media following acidification of groundwater even if significant cell death occurs.

Significance and Impact

Promotes development of biological strategies to enhance geological carbon sequestration by clogging CO₂ leakage pathways.

Publications

Deng, W., B. Cardenas, M. Kirk, S. Altman, and P. Bennett (2013), The effect of permeable biofilm on micro- and macro-scale flow and transport in bioclogged pores, *Environmental Science & Technology*, *47*(19), 11092–11098.

Kirk, M. F., E. F. U. Santillan, L. K. McGrath, and S. J. Altman (2012), Variation in hydraulic conductivity with decreasing pH in a biologically-clogged porous medium, *International Journal of Greenhouse Gas Control*, 11, 133-140.

19 h 43 hflow $K = 0.011 \text{ cm s}^{-1}$ $K = 0.006 \text{ cm s}^{-1}$

Contacts

Susan Altman(sialtma@sandia.gov)
Matthew Kirk (mfkirk@ksu.edu)
M. Bayani Cardenas (cardenas@jsg.utexas.edu)

Confocal microscope images showing microbial biomass in porous media at two different times for an experiment run at a pH of 7.2. Black is glass beads, green the cells, and red the pore fluid. The growth over the 4 days caused the hydraulic conductivity (K) to decrease 9X on average.

